A NEW METHOD FOR REGIOSELECTIVE α -MONO- OR α , α -DI-DEUTERATION OF CARBONYL COMPOUNDS

Noboru ONO, * Isami HAMAMOTO, Hideyoshi MIYAKE, and Department of Chemistry, Faculty of Science, Kyoto University, Kyoto 606

Mono- or di-deuterated carbonyl compounds are prepared regioselectively by the base-catalyzed H-D exchange of α -hydrogen of aliphatic nitro compounds and the subsequent replacement of the nitro group by H or D with Bu_3SnX (X = H, D).

It is not easy to prepare mono- or di-deuterated carbonyl compounds regioselectively. For example, α -deuteration of 4-octanone by base catalysis gives a complex mixture of 3-D₁($\underline{1}$), 3-D₂($\underline{2}$), 5-D₁($\underline{3}$), 5-D₂($\underline{4}$), and others, and it is very difficult to prepare each of them selectively. In this paper we report a simple successful method for this conversion, which is based on our recent findings of replacement of a nitro group by H or D with Bu_3SnX (X = H, D).

 $\alpha\textsc{-Nitroketones}$ can be prepared regioselectively by acylation of nitroparaffins²⁾ or nitration of enol acetates.³⁾ For example, 3-nitro-4octanone (5) or 5-nitro-4-octanone (7) was prepared from 1-nitropropane and pentanal or from 1-nitrobutane and butanal, respectively, by the oxidation of the corresponding β -nitro alcohols. Then α -nitroketones were treated with D₂O-AcONa in diethyl ether to result in the clean H-D exchange giving $\underline{6}$ or $\underline{8}$, respectively. The ratio of exchange was estimated to be more than 95% by H NMR. The choice of bases and solvents is important for this exchange. More stronger bases than AcONa may cause the side reactions. In general, α -nitroketones are labile to basic conditions. $^{4)}$ The exchange proceeded at a reasonable rate in diethyl ether, but it was very slow in other solvents such as benzene or acetonitrile. Treatment of $\underline{6}$ or $\underline{8}$ with Bu₃SnX (X = H, D) gave $\underline{1}$, $\underline{2}$, $\underline{3}$, or $\underline{4}$, respectively, in good yields. The D content of the product was very high, which depended on only the first exchange step.

Another important merit of using nitro compounds is that α -hydrogen of the nitro function is more readily exchanged with D than other acidic hydrogens. For example, compound $\underline{9}$ gave $\underline{10}$ selectively by treatment eith D $_2$ O-AcONa in diethyl ether, although $\underline{9}$ had six acidic hydrogens. Compounds $\underline{11}$ and $\underline{12}$, mono- and di-deuterated at α -position of the methoxycarbonyl group, respectively, were obtained selectively from $\underline{10}$ without any contamination of D at α -position of the carbonyl group.

Typical procedure: A mixture of $\underline{9}$ (1.42 g, 7.5 mmol), D_2O (1.1 ml), AcONa (0.57 g, 7.0 mmol), Et_2O (15 ml) was stirred at room temperature for 5 h. The ether layer was dried and concentrated. The same procedure was repeated once more to give $\underline{10}$ (1.35 g, 95%). NMR (CCl₄) δ 2.2 (s, 3H), 2.3 (t, 2H), 2.4 (t, 2H), 3.8 (s, 3H); the peak at δ 5.1 due to α -proton of the nitro group completely disappeared. Then a mixture of $\underline{10}$ (0.540 g, 2.84 mmol), Bu_3SnD (1.08 g, 3.69 mmol), AIBN (0.14 g, 0.85 mmol) in benzene (10 ml) was refluxed for 2 h. Column chromatography (silica gel, benzene-hexane) gave pure $\underline{12}$ (0.36 g, 88%). NMR (CCl₄) δ 0.9 (t, 2H), 2.05 (s, 3H), 2.45 (t, 2H), 3.60 (s, 3H). Similarly $\underline{11}$ was obtained by using Bu_3SnH . NMR (CCl₄) δ 0.9 (q, 2H), 2.05 (s, 3H), 2.30 (t, 1H), 2.45 (t, 2H), 3.60 (s, 3H).

References

- (1) N. Ono, H. Miyake, R. Tamura, and A. Kaji, Tetrahedron Lett., 1705 (1981).
- (2) Houben-Weyl, "Methoden der Organischen Chemie", E. Muller, Ed., George Thieme Verlag, Stuttgart, 1971, band 10/1.
- (3) P. Dampawan and W. W. Zajac, Jr., Tetrahedron Lett., 135 (1982), and references therein. Review of cyclic α -nitroketones, see: R. H. Fischer and H. M. Weitz, Synthesis, 261 (1980).
- (4) Ring cleavage of cyclic α -nitroketones under basic conditions is popular, so similar reaction may occur in the acyclic case. (see ref 3).

(Received May 4, 1982)